Birla Institute of Technology and Science - Pilani, Pilani Campus Session 2017-18 (Semester - I) Comprehensive Examination (Closed Book) Course: Particle Physics (PHYF413)

Date: 09/12/2017

Time: 90 Mints.

Max. Marks: 40

Q1: A pion traveling at speed v decays into muon and neutrino, $\pi^- \to \mu^- + \bar{\nu}_{\mu}$. If the neutrino emerges at right angle from the original direction of the pion, at what angle does the muon come off? Masses of pion and muon are m_{π} , $m_{\mu-}$, respectively. [8]

Q2: A free electron having four momentum p^{μ} is described by a four component wave function $\psi = u(\vec{p})e^{-p.x}$. Above electron satisfies the Dirac equation, $(\gamma_{\mu}p^{\mu} - m)\psi = 0$. Write an equation describing an electron in an electromagnetic field A^{μ} . Derive an expression for the T_{fi} and identify the Dirac current for the electron. [8]

Q3: Using the expression for Dirac current obtained in Q2, obtain an expression for T_{fi} for the interaction of $e^{-\mu} \rightarrow e^{-\mu}$. Thus define Lorentz invariant amplitude -iM. Also draw the relevant Feynman diagram with appropriate terms (external lines, vertex factors and propagator) on the different components of the diagram. [6]

Q4: Write invariant amplitude for the pair annihilation and Compton scattering processes: $e^-e^+ \rightarrow \gamma\gamma$, $\gamma e^- \rightarrow \gamma e^-$. [3+3] Q5: An electron with spin interacts with A^{μ} not only via its charge but also via its magnetic moment. Above statement is called Gordon decomposition and stated as follows:

 $\bar{u}_f \gamma^{\mu} u_i = \frac{1}{2m} \bar{u}_f [(p_f + p_i)^{\mu} + i\sigma^{\mu\nu} (p_f - p_i)_{\nu}] u_i.$

Prove the above result using the Dirac equation for spinors \bar{u}_f and u_i . p_f and p_i are final and initial four momenta of electron with mass m. [Given, $\sigma^{\mu\nu} = \frac{i}{2} (\gamma^{\mu}\gamma^{\nu} - \gamma^{\nu}\gamma^{\mu})$][6]

Q6: Prove the following:

(i) $\gamma_{\mu} \phi \phi \gamma^{\mu} = 4 a.b$ (ii) $\gamma_{\mu} \phi \phi \gamma^{\mu} = -2 \phi \phi \phi$. [3+3]