Birla Institute of Technology and Science - Pilani, Pilani Campus
 Session 2017-18 (Semester - I)

 Comprehensive Examination (Closed Book)

 Comprehensive Examination (Closed Book)

 Course: Particle Physics (PHYF413)

 Course: Particle Physics (PHYF413)}

Date: 09/12/2017
Time: 90 Mints.
Max. Marks: 40

Q1: A pion traveling at speed v decays into muon and neutrino, $\pi^{-} \rightarrow \mu^{-}+\bar{\nu}_{\mu}$. If the neutrino emerges at right angle from the original direction of the pion, at what angle does the muon come off? Masses of pion and muon are $m_{\pi}, m_{\mu-}$, respectively. [8]
Q2: A free electron having four momentum p^{μ} is described by a four component wave function $\psi=u(\vec{p}) e^{-p . x}$. Above electron satisfies the Dirac equation, $\left(\gamma_{\mu} p^{\mu}-m\right) \psi=0$. Write an equation describing an electron in an electromagnetic field A^{μ}. Derive an expression for the $T_{f i}$ and identify the Dirac current for the electron. [8]
Q3: Using the expression for Dirac current obtained in Q2, obtain an expression for $T_{f i}$ for the interaction of $e-\mu-\rightarrow e-\mu-$. Thus define Lorentz invariant amplitude $-i M$. Also draw the relevant Feynman diagram with appropriate terms (external lines, vertex factors and propagator) on the different components of the diagram. [6]

Q4: Write invariant amplitude for the pair annihilation and Compton scattering processes: $e^{-} e^{+} \rightarrow \gamma \gamma, \gamma e^{-} \rightarrow \gamma e^{-} .[3+3]$ Q5: An electron with spin interacts with A^{μ} not only via its charge but also via its magnetic moment. Above statement is called Gordon decomposition and stated as follows:

$$
\bar{u}_{f} \gamma^{\mu} u_{i}=\frac{1}{2 m} \bar{u}_{f}\left[\left(p_{f}+p_{i}\right)^{\mu}+i \sigma^{\mu \nu}\left(p_{f}-p_{i}\right)_{\nu}\right] u_{i} .
$$

Prove the above result using the Dirac equation for spinors \bar{u}_{f} and $u_{i} . p_{f}$ and p_{i} are final and initial four momenta of electron with mass m. [Given, $\left.\sigma^{\mu \nu}=\frac{i}{2}\left(\gamma^{\mu} \gamma^{\nu}-\gamma^{\nu} \gamma^{\mu}\right)\right][6]$
Q6: Prove the following:
(i) $\gamma_{\mu} \phi b b \gamma^{\mu}=4 a . b$ (ii) $\gamma_{\mu} d b \phi \gamma^{\mu}=-2 \notin b \phi .[3+3]$

