Birla Institute of Technology and Science - Pilani, Pilani Campus

Session 2017-18 (Semester - I)
Mid-semester Test
Particle Physics (PHYF413)

Date: 12/10/2017
Weightage: 30%
Time: 90 Mints.
Max. Marks: 60

Note: This question paper has two parts: Part A and Part B. It contains total eight questions including both the parts. Marks are indicated in front of questions. All the symbols not defined here have their usual meaning.

Part A

Q1: For a two body decay process, $a \rightarrow 1+2$, decay rate is given by $\Gamma_{f i}=\frac{(2 \pi)^{-2}}{2 E_{a}} \int\left|M_{f i}\right|^{2} \delta\left(E_{a}-E_{1}-E_{2}\right) \delta^{3}\left(\vec{p}_{a}-\vec{p}_{1}-\right.$ $\left.\vec{p}_{2}\right) d^{3} p_{1} / 2 E_{1} d^{3} p_{2} / 2 E_{2}$. Here $\left|M_{f i}\right|$ is a Lorentz invariant matrix element. Use above expression to obtain a formula for the decay rate of particle a in the centre-of-mass frame of reference in terms of integral of $\left|M_{f i}\right|^{2}$ over solid angle and p^{*}, where p^{*} is the momentum of outgoing particles in the center-of-mass frame. [8]

Q2: Assume an electron is moving under the effect of an electromagnetic field described by electromagnetic four potential A^{μ}. Write Klein-Gordon equation for its motion. Find an expression for the lowest order scattering amplitude $T_{f i}$ (covariant form i.e. $\left|T_{f i}\right|^{\prime}$ in CN notation) in terms of four current J_{μ} and potential A^{μ}. [8]
Q3: Obtain covariant form of the Dirac equation for a particle of mass m and moving with a momentum \vec{p} from its corresponding non-covariant form. By using the properties of the Dirac gamma matrices, find Dirac equation for adjoint spinor, $\bar{\psi}$. [8]

Part B

Q4: Draw Feynman's diagram for the lowest order two body scattering process, $e^{-} \mu^{-} \rightarrow e^{-} \mu^{-}$(do not forget to indicate + ve direction of time!). Write its invariant amplitude, ignoring the spin of the particles involved, using QED Feynman's rules without spin. [8]
Q5: Obtain the commutator of the Dirac Hamiltonian \hat{H}_{D} with spin angular momentum $\hat{S}:[\alpha \cdot \hat{\vec{p}}+\beta m, \hat{S}]$. [8]
Q6: Find an expression for the Dirac four current, J^{μ}. For a particle moving with a momentum p along z-axis, show that $\hat{S}_{z} u_{1}\left(E, 0,0, \pm p=+\frac{1}{2} u_{1}(E, 0,0, \pm p)\right.$ and $\hat{S}_{z} u_{2}(E, 0,0, \pm p)=-\frac{1}{2} u_{2}(E, 0,0, \pm p)$. Here $u_{1}(E, 0,0, \pm p)$ and $u_{2}(E, 0,0, \pm p)$ are the Dirac energy momentum dependent particle spinors and \hat{S}_{z} is the z-component of spin operator. [2+2+4]
Q7: Show that:
(i) $\not p p p=p^{2}$
(ii) $\bar{v}\left(\gamma^{\mu} p_{\mu}+m\right)=0$
for a particle/antiparticle of mass m and moving with three momentum \vec{p}.
Q8: Compute the following:
(i) $[\hat{\sigma} \cdot(\vec{p}+e \vec{A})][\hat{\sigma} \cdot(\vec{p}+e \vec{A})]$
(ii) $\bar{v}^{(s)} v^{(s)}$
[6]

** Best of Luck **

