Birla Institute of Technology and Science - Pilani, Pilani Campus Session 2017-18 (Semester - I) Mid-semester Test Particle Physics (PHYF413)

Weightage: 30 %

Max. Marks: 60

Date: 12/10/2017

Time: 90 Mints.

Note: This question paper has two parts: Part A and Part B. It contains total eight questions including both the parts. Marks are indicated in front of questions. All the symbols not defined here have their usual meaning.

Part A

Q1: For a two body decay process, $a \to 1+2$, decay rate is given by $\Gamma_{fi} = \frac{(2\pi)^{-2}}{2E_a} \int |M_{fi}|^2 \delta(E_a - E_1 - E_2) \delta^3(\vec{p}_a - \vec{p}_1 - \vec{p}_2) d^3 p_1/2E_1 d^3 p_2/2E_2$. Here $|M_{fi}|$ is a Lorentz invariant matrix element. Use above expression to obtain a formula for the decay rate of particle a in the centre-of-mass frame of reference in terms of integral of $|M_{fi}|^2$ over solid angle and p^* , where p^* is the momentum of outgoing particles in the center-of-mass frame. [8]

Q2: Assume an electron is moving under the effect of an electromagnetic field described by electromagnetic four potential A^{μ} . Write Klein-Gordon equation for its motion. Find an expression for the lowest order scattering amplitude T_{fi} (covariant form i.e. $|T_{fi}|'$ in CN notation) in terms of four current J_{μ} and potential A^{μ} . [8]

Q3: Obtain covariant form of the Dirac equation for a particle of mass m and moving with a momentum \vec{p} from its corresponding non-covariant form. By using the properties of the Dirac gamma matrices, find Dirac equation for adjoint spinor, $\bar{\psi}$. [8]

Part B

Q4: Draw Feynman's diagram for the lowest order two body scattering process, $e^-\mu^- \rightarrow e^-\mu^-$ (do not forget to indicate +ve direction of time!). Write its invariant amplitude, ignoring the spin of the particles involved, using QED Feynman's rules without spin. [8]

Q5: Obtain the commutator of the Dirac Hamiltonian \hat{H}_D with spin angular momentum \hat{S} : $[\alpha \cdot \vec{p} + \beta m, \hat{S}]$. [8]

Q6: Find an expression for the Dirac four current, J^{μ} . For a particle moving with a momentum p along z-axis, show that $\hat{S}_z u_1(E, 0, 0, \pm p) = +\frac{1}{2} u_1(E, 0, 0, \pm p)$ and $\hat{S}_z u_2(E, 0, 0, \pm p) = -\frac{1}{2} u_2(E, 0, 0, \pm p)$. Here $u_1(E, 0, 0, \pm p)$ and $u_2(E, 0, 0, \pm p)$ are the Dirac energy momentum dependent particle spinors and \hat{S}_z is the z-component of spin operator. [2+2+4]

Q7: Show that:

(i) $p p = p^2$ (ii) $\bar{v}(\gamma^\mu p_\mu + m) = 0$ [6]

for a particle/antiparticle of mass m and moving with three momentum \vec{p} .

Q8: Compute the following:

(i) $[\hat{\sigma}.(\vec{p} + e\vec{A})] [\hat{\sigma}.(\vec{p} + e\vec{A})]$ (ii) $\bar{v}^{(s)}v^{(s)}$ [6]

** Best of Luck **