Birla Institute of Technology and Science - Pilani, Pilani Campus
 Semester I (Session 2022-23)
 Midsemester Examination (Closed Book)
 Particle Physics (PHYF 413)

Date: 01/11/2022
Weightage : 25 \%
Time: 90 Mints.

Q1: (a) Consider the following interaction process; $A+B \rightarrow C+D+E$ with masses, m_{A}, m_{B}, m_{C} and m_{D} and m_{E}, respectively. Find the threshold kinetic energy of particle A in the lab frame to just produce the particles C, D and E. (b) Express $800 \mathrm{~kg} \mathrm{~m} / \mathrm{sec}$ and 100 kg into energy units (Joule) and then convert it in MeV . [5]

Q2: Assuming collision process to be $A+B+C \rightarrow 1+2+3$; Write an expression for $d N$ (no. of available states for particles having momentum in the range \vec{p} to $\vec{p}+\overrightarrow{d p}$) using Dirac-delta function for momentum conservation. Also write relation between $H_{f i}$ and Lorentz invariant matrix element $M_{f i}$. [5]

Q3: (a) Obtain Dirac equation in the covarient form. Also find square properties of Dirac gamma matrices using the properties of Dirac α_{s} and β matrices. (b) Without solving Maxwell equation, I mean using an appropriate identity, determine the em potential A^{μ} for a muons which constitute a four current given by $J^{\mu}=-e N_{A} N_{C}\left(p_{A}+p_{C}\right)^{\mu} e^{i\left(p_{C}-p_{A}\right) \cdot x}$, . Here N_{A} and N_{C} are normalization constants. [5]

Q4: (a) Write Klein-Gordon equation for an alpha particle moving under the action of an em field given by A^{μ}. (b) For scattering process $A+B \rightarrow C+D$, draw simplest t-channel Feynman diagram. Using Feynman rules for QED (forgetting the spin!), write an expression for Lorentz invarient amplitude $-i M$. [5]

Q5: For a two body decay process, $A \rightarrow 1+2$, write an expression for the decay rate using Fermi's golden rule in terms of 6 D three momentum integral. Then integrate it to obtain the final expression for the Decay rate. [5]

[^0]
[^0]: ** Best Wishes **

