Birla Institute of Technology and Science - Pilani, Pilani Campus
 Semester I (Session 2023-24)

 Mid-Semester Examination (Closed Book)

 Mid-Semester Examination (Closed Book)

 Particle Physics (PHY F413)

 Particle Physics (PHY F413)}

Date: 11/10/2023
Weightage: 25 \%
Time: 90 Mints.
Max. Marks: 25
Note: (1) All symbols used in QP have their usual meaning.
(2) Write your answers precise and clean.

Q1: (a) For an elastic scattering process; $A+A \rightarrow A+A$, show that the Mandelstam's variables are expressed as; $s=4\left(k^{2}+m^{2}\right), t=-2 k^{2}(1-\cos \theta), u=-2 k^{2}(1+\cos \theta)$, where k is the three CM momentum of the incident particle, m is the mass of the particle and θ is the angle of scattering in the CM frame. (b) Write the relativistic energy momentum relation for a particle of mass m and momentum \vec{p} in NUs and use the same to determine the energy of the particle in MeV , if $p=0.9 c \times 10^{-10} \mathrm{~kg} \mathrm{~m} / \mathrm{sec}$ and mass $9.0 \times 10^{-10} \mathrm{~kg}$. [3+2]

Q2: Assuming collision process to be $P+Q+R \rightarrow 1+2+3$; Write an expression for $d N$ (no. of available states for particles having momentum in the range \vec{p} to $\vec{p}+\overrightarrow{d p}$) using Dirac-delta function for momentum conservation. Also write relation between $H_{f i}$ and Lorentz invariant matrix element $M_{f i}$. [5]

Q3: (a) Write Klein-Gordon equation for an electron moving under the action of an em. field expressed as A^{μ} and identify interaction term. (b) For scattering process $A+B \rightarrow C+D$, draw the simplest t -channel Feynman's diagram. Using QED Feynman's rules involving spin-less particles, write an expression for Lorentz invariant amplitude $-i M$. [5]

Q4: (a) For two body scattering process, show that the incoming flux, $F=4 E_{a} E_{b}\left(v_{a}+v_{b}\right)$ is Lorentz invariant. Here E_{a} and E_{b} are energy and v_{a} and v_{b} are velocity of incoming particles, respectively. (b) Assume an em. field A^{μ} created by a moving muon which produces a four current J^{μ}. Write an equation relating A^{μ} and J^{μ}. Use an appropriate identity to find A^{μ} in terms of J^{μ}. Use the above result to write an expression for $T_{f i}$ for a $e^{-} \mu^{-} \rightarrow e^{-} \mu^{-}$scattering process. [2+3]

Q5: For a two body scattering process, $A+B \rightarrow 1+2$, write an expression for the scattering cross-section using Fermi's golden rule in terms of 6 -D three momentum integral. Then integrate it to obtain the final expression for the scattering cross-section in CM frame of reference. [5]

