Birla Institute of Technology and Science - Pilani, Pilani Campus
 Semester I (Session 2023-24)
 Comprehensive Examination (Closed Book)
 Particle Physics (PHYF 413)

Date : 12/12/2023
Weightage : 15%
Time: 90 Mints.

Note: (i) Write your answers clean and precise.
(ii) All symbols used here have their usual meaning. In case of any issue, ask to Invigilator/Instructor.

Q1: Write Dirac equation for an electron moving under the action of e.m. field represented by four potential A^{μ}. Use $T_{f i}=-i \int J_{\mu} A^{\mu} d^{4} x$ to obatin an expression for the matrix element $T_{f i}$ for a scattering process; $e^{-} \mu^{-} \rightarrow e^{-} \mu^{-}$. Here J_{μ} is the electron four current given by $J_{\mu}=-e \bar{\psi}_{f} \gamma_{\mu} \psi_{i}$. [3]

Q2: Solve Dirac equation for an anti-particle solution and obtain all four solutions (i.e., v_{1}, v_{2}, v_{3} and v_{4}) in terms of energy E and momentum components p_{x}, p_{y} and p_{z}. [3]

Q3: Define Pauli tensor $\sigma^{\mu \nu}$ in terms of Dirac gamma matrices. Write all 16 bilinear covariant quantities. Obtain transformation properties of the $\bar{\psi} \psi$ and $\psi^{\dagger} \psi$ under Lorentz and parity transformations. [3]

Q4: Draw all possible channel (tree level) Feynman's diagrams (indicating the direction of time and space) for Moller scattering process ($\left(e^{-} e^{-} \rightarrow e^{-} e^{-}\right.$). Use QED Feynman's rules (with spin included) to write an expression for the invariant amplitudes, $-i M$ for all the diagrams. [3]

Q5: (a) Show that $\frac{d^{3} \vec{p}}{E}$ is Lorentz invariant. Here $d^{3} \vec{p}$ is a volume element in 3D-momentum space and E is the energy of the particle. (b) Obtain $\left[H_{D}, L\right]$, where H_{D} is the Dirac Hamiltonian, $H_{D}=\alpha . \mathbf{p}+\beta m$ and L is the orbital angular momentum of the Dirac particle. [3]

Birla Institute of Technology and Science - Pilani, Pilani Campus
 Semester I (Session 2023-24)
 Comprehensive Examination (Open Book)
 Particle Physics (PHYF 413)

Date: 12/12/2023
Weightage: 20 \%
Time: 90 Mints.
Max. Marks: 20

Q1: Assume two body scattering process; $A+\bar{A} \rightarrow A+\bar{A}$. Draw possible Feynman's diagrams. Use full QED Feynman's rules to write corresponding invariant amplitude $-i M$. Here \bar{A} stands for corresponding antiparticle. [4]

Q2: Consider a Lorentz invariant amplitude; $M=\left[\bar{v}_{3} \Gamma_{1} v_{1}\right]\left[\bar{u}_{4} \Gamma_{2} u_{2}\right]$ for a two body scattering process, where Γ_{1} and Γ_{2} have the property; $\Gamma^{\dagger}=\gamma^{0} \Gamma \gamma^{0}$. Assuming unpolarized scattering process and using Casimir's trick to obtain the expression for $\Sigma_{\text {allspins }}<|M|^{2}>$ in terms of the Trace of products of different Dirac gamma matrices. [4]

Q3: Answer the following:
(a) Write Pauli-Weisskopf prescription for Dirac four current.
(b) Can you write a result (identity) which tells electron interacts among themselves not only via its charge but also via its spin angular momentum?
(c) Use definition of the Pauli's tensor $\sigma^{\mu \nu}$ and by taking appropriate values of μ and ν, relate it to the components of the spin angular momentum, S_{x}, S_{y} and S_{z}.
(d) Write an expression for propagator used to write an invariant amplitude for Compton scattering, pair annihilation and pair production processes. [4]

Q4: Show that the following results related to the Dirac gamma matrices: (a) $\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\lambda} \gamma^{\sigma} \gamma^{\delta}\right)=0$ (b) $\gamma^{5} \gamma^{\mu}=-\gamma^{\mu} \gamma^{5}$. (c) $\not p \not p=p^{2}$ [4]

Q5: Consider antiparticle solutions of the Dirac equation, v_{1} and v_{2}. (a) Use relativistic normalization condition to obtain the normalization constant, N. (b) Obtain v_{1} and v_{2} for an antiparticle which is at rest. (c) Use v_{1} thus obtained to show that $S_{z} v_{1}=\frac{1}{2} v_{1}$, where $S_{z}=\frac{1}{2} \Sigma_{z}$. [4]

