Birla Institute of Technology and Science - Pilani, Pilani Campus Semester I (Session 2023-24) Comprehensive Examination (Closed Book) Particle Physics (PHYF 413)

Date : 12/12/2023

Time: 90 Mints.

Weightage : 15%

Max. Marks: 15

Note: (i) Write your answers clean and precise.

(ii) All symbols used here have their usual meaning. In case of any issue, ask to Invigilator/Instructor.

Q1: Write Dirac equation for an electron moving under the action of e.m. field represented by four potential A^{μ} . Use $T_{fi} = -i \int J_{\mu} A^{\mu} d^4 x$ to obtain an expression for the matrix element T_{fi} for a scattering process; $e^-\mu^- \rightarrow e^-\mu^-$. Here J_{μ} is the electron four current given by $J_{\mu} = -e\bar{\psi}_f \gamma_{\mu} \psi_i$. [3]

Q2: Solve Dirac equation for an anti-particle solution and obtain all four solutions (i.e., v_1 , v_2 , v_3 and v_4) in terms of energy E and momentum components p_x , p_y and p_z . [3]

Q3: Define Pauli tensor $\sigma^{\mu\nu}$ in terms of Dirac gamma matrices. Write all 16 bilinear covariant quantities. Obtain transformation properties of the $\bar{\psi}\psi$ and $\psi^{\dagger}\psi$ under Lorentz and parity transformations. [3]

Q4: Draw all possible channel (tree level) Feynman's diagrams (indicating the direction of time and space) for Moller scattering process $(e^-e^- \rightarrow e^-e^-)$. Use QED Feynman's rules (with spin included) to write an expression for the invariant amplitudes, -iM for all the diagrams. [3]

Q5: (a) Show that $\frac{d^3\vec{p}}{E}$ is Lorentz invariant. Here $d^3\vec{p}$ is a volume element in 3D-momentum space and E is the energy of the particle. (b) Obtain $[H_D, L]$, where H_D is the Dirac Hamiltonian, $H_D = \alpha \cdot \mathbf{p} + \beta m$ and L is the orbital angular momentum of the Dirac particle. [3]

** Best Wishes **

Birla Institute of Technology and Science - Pilani, Pilani Campus Semester I (Session 2023-24) Comprehensive Examination (Open Book) Particle Physics (PHYF 413)

Date : 12/12/2023 Time: 90 Mints. Weightage : 20 % Max. Marks: 20

Q1: Assume two body scattering process; $A + \overline{A} \rightarrow A + \overline{A}$. Draw possible Feynman's diagrams. Use full QED Feynman's rules to write corresponding invariant amplitude -iM. Here \overline{A} stands for corresponding antiparticle. [4]

Q2: Consider a Lorentz invariant amplitude; $M = [\bar{v}_3\Gamma_1 v_1][\bar{u}_4\Gamma_2 u_2]$ for a two body scattering process, where Γ_1 and Γ_2 have the property; $\Gamma^{\dagger} = \gamma^0 \Gamma \gamma^0$. Assuming unpolarized scattering process and using Casimir's trick to obtain the expression for $\Sigma_{allspins} < |M|^2 >$ in terms of the Trace of products of different Dirac gamma matrices. [4]

Q3: Answer the following:

(a) Write Pauli-Weisskopf prescription for Dirac four current.

(b) Can you write a result (identity) which tells electron interacts among themselves not only via its charge but also via its spin angular momentum?

(c) Use definition of the Pauli's tensor $\sigma^{\mu\nu}$ and by taking appropriate values of μ and ν , relate it to the components of the spin angular momentum, S_x , S_y and S_z .

(d) Write an expression for propagator used to write an invariant amplitude for Compton scattering, pair annihilation and pair production processes. [4]

Q4: Show that the following results related to the Dirac gamma matrices: (a) $\text{Tr}(\gamma^{\mu}\gamma^{\nu}\gamma^{\lambda}\gamma^{\sigma}\gamma^{\delta}) = 0$ (b) $\gamma^{5}\gamma^{\mu} = -\gamma^{\mu}\gamma^{5}$. (c) $pp = p^{2}$ [4]

Q5: Consider antiparticle solutions of the Dirac equation, v_1 and v_2 . (a) Use relativistic normalization condition to obtain the normalization constant, N. (b) Obtain v_1 and v_2 for an antiparticle which is at rest. (c) Use v_1 thus obtained to show that $S_z v_1 = \frac{1}{2}v_1$, where $S_z = \frac{1}{2}\Sigma_z$. [4]

** Best Wishes **