BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI MIDSEMESTER EXAMINATION (Open Book) 2022-23 I SEM
 PHYSICS OF ADVANCED MATERIALS PHY F414
 TIME 90MINS 90 MARKS DATE: 2.11.2022

1. Find the miller indices of all the directions of maximum linear density for (i) (111) plane in FCC unit cell and ($\overline{1} 01$) plane in a BCC unit cell. [8]
2. BCC lithium contains one vacancy per 200 unit cells. Calculate the vacancy concentration (vacancies $/ \mathrm{cm}^{3}$) and mass density $\left(\mathrm{g} / \mathrm{cm}^{3}\right.$). Given: atomic weight of $\mathrm{Li}=\mathbf{6 . 9 4} \mathrm{g} / \mathrm{mol}$, atomic radius $=0.152 \mathrm{~nm}$. [10]
3. Given: ionic radii of Ni and oxygen as 0.069 nm and 0.14 nm , respectively. Write down the basis (atomic positions in a unit cell) of NiO . Find the packing fraction. Find the total Linear density of [110] direction and planar density of (110). [16]
4. A piece of Aluminum metal originally contains one copper atom for every ten million Aluminum atoms. In order to form an alloy with copper, a concentration of 500 copper atoms for every ten million Aluminum atoms is maintained at the surface of the metal piece. For an operating temperature of $700{ }^{\circ} \mathrm{C}$ at what depth below the surface after 500 h the concentration corresponding to 40 atoms of Cu for every 10 million of Al atoms will be achieved? [12] Given for Cu in Al: $\mathbf{D}_{\mathbf{0}}=\mathbf{6 . 5} \mathbf{~} \mathbf{1 0} \mathbf{0}^{-5} \mathrm{~m}^{2} / \mathrm{s}, \mathbf{Q}_{\mathrm{d}}=\mathbf{1 . 4 1} \mathrm{eV} /$ atom $)$
5. If same concentration of 40 atoms of Cu for every 10 million of Al atoms is to be achieved after 500 hrs at a depth of 5 mm , calculate the operating temperature [8]
6. A region of $\mathrm{Cu}-\mathrm{Zn}$ phase diagram has been enlarged to show the eutectoid point (E). The compositions corresponding to points Q, E and P are 70,74 and 78.6% of Zn respectively. For a 20 kg of $72 \% \mathrm{Zn}$ alloy, just below the eutectoid temperature, Calculate the amount of
(i) total γ and total ε phases. [6]
(ii) primary ε and eutectoid phase. [6]
(iii) γ in the eutectoid phase. [6]
(iv) Volume fraction of eutectoid and ε phase. [8]
$>$ Densities of Cu and Zn are 8.94 and $7.13 \mathrm{~g} / \mathrm{cm}^{3}$

7. For a BCC crystal consider bond energy per atom to be E Joules. Would you expect the surface energy for a (110) plane to be greater or less than that for a (100) plane? Justify. [10]

Table 5.1	Tabulation of Error						Function Values		
\boldsymbol{z}	$\operatorname{erf}(\boldsymbol{z})$	\boldsymbol{z}	$\operatorname{erf}(\boldsymbol{z})$	\boldsymbol{z}	$\operatorname{erf}(\boldsymbol{z})$				
0	0	0.55	0.5633	1.3	0.9340				
0.025	0.0282	0.60	0.6039	1.4	0.9523				
0.05	0.0564	0.65	0.6420	1.5	0.9661				
0.10	0.1125	0.70	0.6778	1.6	0.9763				
0.15	0.1680	0.75	0.7112	1.7	0.9838				
0.20	0.2227	0.80	0.7421	1.8	0.9891				
0.25	0.2763	0.85	0.7707	1.9	0.9928				
0.30	0.3286	0.90	0.7970	2.0	0.9953				
0.35	0.3794	0.95	0.8209	2.2	0.9981				
0.40	0.4284	1.0	0.8427	2.4	0.9993				
0.45	0.4755	1.1	0.8802	2.6	0.9998				
0.50	0.5205	1.2	0.9103	2.8	0.9999				

