BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI

II SEMESTER 2021-22

Mid-Semester Examination

Soft Condensed Matter Physics (PHY F416))

IMPORTANT:

Mere deriving an expression is not a qualification of getting full marks. You have to explain the terms and equations that are appearing in the process of solving the problem.

1. (15 marks) Consider a polymer that is pulled by an applied force, f. The potential energy of the system is

$$E_f(\{\boldsymbol{r}_i\}) = -\boldsymbol{f}.\sum_i \boldsymbol{r}_i.$$

By defining the probability of finding the chain in a configuration $\{r_i\} = (r_1, r_2...r_i)$, find out the average of r_i and show that it is,

$$\langle \boldsymbol{r}_i \rangle = r \frac{\boldsymbol{f}}{|\boldsymbol{f}|} \left[\coth(\xi) - \frac{1}{\xi} \right]$$

where $\xi = \frac{|\mathbf{f}|r}{k_B T}$.

- 2. Consider a homogeneous solution made of two components, solute and solvent.
 - (a) (7 marks) Find out the Helmholtz free energy per unit volume $f(\phi)$.
 - (b) (7 marks) Using the phase diagram, explain the condition in which a solution can be considered as a homogeneous/heterogeneous.
 - (c) (5 marks) Define the spinodal and binodal lines on the phase diagram.
 - (d) (10 marks) Using lattice model, derive an expression for $f(\phi)$.
 - (e) (6 marks) Through the proper phase diagram, discuss the limit of solubility of one immiscible liquid in another in terms of the interaction parameter, χ .
- 3. (10 marks) Consider an (m+1)-component solution. Let M_j be the number of molecules of component j (j = 0, 1, 2...) in the solution, and v_i be the specific volume of each component. The total volume of the solution is given by,

$$V = \sum_{j=0}^{m} v_j N_j$$

Assuming that v_i are all constant, show that the Gibbs free energy of the solution is given by:

$$G(M_0, ..., M_m, T, P) = PV + V f(\phi_1, \phi_2, ..., \phi_m, T)$$

where $\phi_j = \frac{v_j M_j}{V}$ is the volume fraction of the j^{th} component.

- 4. (a) (10 marks) Consider a polymer of N+1 monomers on a random walk. Find out the expression for the end-to-end distance of the polymer chain. Assume a constant bond length b between each monomer.
 - (b) (5 marks) Discuss the shortcoming of the model and calculate the more accurate expression for the end-to-end distance using the concept of a statistical segment.
- 5. For polystyrene chains with a degree of polymerization 3.0×10^6 and average bond length 0.35 nm, find out the following:
 - (a) (5 marks) the RMS value of end-to-end distance in a melt.
 - (b) (5 marks) the RMS value of end-to-end distance in a dilute, good solvent, with a value of the interaction parameter, $\chi = 0$.
- 6. (5 marks) Consider a uniaxial elongation in a viscoelastic material at a point P(x, y, z). Due to applied stress the points x, y, z are displaced to $x' = \delta^{-2}x$, $y' = \delta^{-2}y$, $z' = \delta^3z$. The strain is defined as $\gamma(t) = \frac{1}{\delta(t)}$. Find out the velocity at point P'(x', y', z').