BIRLA INSTITUTE OF TECHNOLOGY \& SCIENCE, PILANI
 II SEMESTER 2021-22

Mid-Semester Examination
Soft Condensed Matter Physics (PHY F416))
Date: 15-03-2022
Max Time: 90 min
Max Marks: 90

IMPORTANT:

Mere deriving an expression is not a qualification of getting full marks. You have to explain the terms and equations that are appearing in the process of solving the problem.

1. (15 marks) Consider a polymer that is pulled by an applied force, f. The potential energy of the system is

$$
E_{f}\left(\left\{\boldsymbol{r}_{i}\right\}\right)=-\boldsymbol{f} \cdot \sum_{i} \boldsymbol{r}_{i} .
$$

By defining the probability of finding the chain in a configuration $\left\{\boldsymbol{r}_{i}\right\}=\left(r_{1}, r_{2} \ldots r_{i}\right)$, find out the average of \boldsymbol{r}_{i} and show that it is,

$$
\left\langle\boldsymbol{r}_{i}\right\rangle=r \frac{\boldsymbol{f}}{|\boldsymbol{f}|}\left[\operatorname{coth}(\xi)-\frac{1}{\xi}\right]
$$

where $\xi=\frac{|f| r}{k_{B} T}$.
2. Consider a homogeneous solution made of two components, solute and solvent.
(a) ($\mathbf{7}$ marks) Find out the Helmholtz free energy per unit volume $f(\phi)$.
(b) ($\mathbf{7}$ marks) Using the phase diagram, explain the condition in which a solution can be considered as a homogeneous/heterogeneous.
(c) (5 marks) Define the spinodal and binodal lines on the phase diagram.
(d) ($\mathbf{1 0}$ marks) Using lattice model, derive an expression for $f(\phi)$.
(e) (6 marks) Through the proper phase diagram, discuss the limit of solubility of one immiscible liquid in another in terms of the interaction parameter, χ.
3. (10 marks) Consider an $(m+1)$-component solution. Let M_{j} be the number of molecules of component $j(j=0,1,2 .$.$) in the solution, and v_{i}$ be the specific volume of each component. The total volume of the solution is given by,

$$
V=\sum_{j=0}^{m} v_{j} N_{j}
$$

Assuming that v_{j} are all constant, show that the Gibbs free energy of the solution is given by:

$$
G\left(M_{0}, \ldots ., M_{m}, T, P\right)=P V+V f\left(\phi_{1}, \phi_{2}, \ldots ., \phi_{m}, T\right)
$$

where $\phi_{j}=\frac{v_{j} M_{j}}{V}$ is the volume fraction of the $j^{\text {th }}$ component.
4. (a) ($\mathbf{1 0}$ marks) Consider a polymer of $N+1$ monomers on a random walk. Find out the expression for the end-to-end distance of the polymer chain. Assume a constant bond length b between each monomer.
(b) (5 marks) Discuss the shortcoming of the model and calculate the more accurate expression for the end-to-end distance using the concept of a statistical segment.
5. For polystyrene chains with a degree of polymerization 3.0×10^{6} and average bond length 0.35 nm , find out the following:
(a) (5 marks) the RMS value of end-to-end distance in a melt.
(b) (5 marks) the RMS value of end-to-end distance in a dilute, good solvent, with a value of the interaction parameter, $\chi=0$.
6. (5 marks) Consider a uniaxial elongation in a viscoelastic material at a point $P(x, y, z)$. Due to applied stress the points x, y, z are displaced to $x^{\prime}=\delta^{-2} x, y^{\prime}=\delta^{-2} y, z^{\prime}=\delta^{3} z$. The strain is defined as $\gamma(t)=\frac{1}{\delta(t)}$. Find out the velocity at point $P^{\prime}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$.

