BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI FIRST SEMESTER: 2023-2024

 Midsem Test (Closed Book)

 Midsem Test (Closed Book)}

Course No: PHY F421
Date: 10.10.2023

Course Title: Advanced Quantum Mechanics
Max. Time: 90 Mins.

Total Marks: 30

Q1 (a) The radial equation for the scattering of a spinless particle of mass m from the reduced potential, $U(r)=\frac{2 m}{\hbar} V(r)$, is given as $\left[\frac{d^{2}}{d r^{2}}-\frac{l(l+1)}{r^{2}}-U(r)+k^{2}\right] u_{l}(k, r)=0$ (symbols have their usual meanings). Find out the solution $u_{l}(k, r)$ for $r \rightarrow 0$.
(b) Starting from the above radial equation, find out the expression for the phase shift in the integral form in terms of the radial functions and the potential $U(r)$.
(c) The Lippmann-Schwinger equation for the scattering theory is given as:
$\psi_{\boldsymbol{k}_{\boldsymbol{i}}}^{(+)}(\boldsymbol{r})=\exp \left(i \boldsymbol{k}_{\boldsymbol{i}} \cdot \boldsymbol{r}\right)-\frac{1}{4 \pi} \int \frac{\exp \left(i k\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} U\left(\boldsymbol{r}^{\prime}\right) \psi_{\boldsymbol{k}_{\boldsymbol{i}}}^{(+)}(\boldsymbol{r}) d \boldsymbol{r}^{\prime}$, here symbols have their usual meanings.
(i) Find out the asymptotic behavior of $\psi_{\boldsymbol{k}_{\boldsymbol{i}}}^{(+)}(\boldsymbol{r})$, given that the potential decays much faster than $1 / r$ at the asymptotic distance.
(ii) From the asymptotic behavior, find out the scattering amplitude.

Q2 Consider a problem of coupled oscillations, discussed in MeOW, in which 2 identical masses m are loaded on a massless string at equidistance l with their ends are fixed (x=0 and $3 l)$. The tension in the string is T. The eigen value problem is given as: $\ddot{x}_{i}+\omega_{i}^{2} x_{i}=0, i=I$, $I I$ and $\omega_{1}=\sqrt{\frac{T}{m l}}$ and $\omega_{2}=\sqrt{\frac{3 T}{m l}}$ and eigen basis are, $|I\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $|I I\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{c}1 \\ -1\end{array}\right]$. The initial values of the two masses are: $x_{1}(0)=3 \mathrm{~cm}, x_{2}(0)=5 \mathrm{~cm}$.
(a) Find out the position $x_{1}(t)$ and $x_{2}(t)$ from $|x(t)\rangle$, expanded in the basis $|I\rangle$ and $|I I\rangle$
(b) Find out the propagator U.
(c) Find out the matrix elements $U_{21} \& U_{22}$ in the old basis vectors $\left(|1\rangle=\left[\begin{array}{l}1 \\ 0\end{array}\right],|2\rangle=\left[\begin{array}{l}0 \\ 1\end{array}\right]\right.$.

Q3 : (a) Find out the orthonormal basis from the basis:
$|I\rangle=\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right], \quad|I I\rangle=\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right] \quad$ and $|I I I\rangle=\left[\begin{array}{l}0 \\ 5 \\ 2\end{array}\right]$
(b) Find, $\int_{-\infty}^{\infty} \frac{d}{d x} \delta(x) \sin x d x^{\prime}$

