BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI
 FIRST SEMESTER: 2023-2024
 Comprehensive Exam: Part-A (Closed Book)
 Course No: PHY F421
 Course Title: Advanced Quantum Mechanics
 Date: 09.12.2023
 Suggested Time: 120 Mins.
 Total Marks: 25

Note: It contains two parts: Part 1 (Quiz/small answer like) and Part 2 (Descriptive type). Both the parts have to be answered in the same Answer Sheet (Please write Sheet-A on the top of the answer sheet). Once you submit the answer sheet A, you can start writing the Part-B, which is Open book in nature.

Part-1

Q1. The parity operation converts a right handed coordinate system to left handed. Write down the matrix element of the Parity operator in the space basis (Cartesian coordinate). (0.5)

Q2. Consider the matrix $\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$,
(a) What is the nature of the matrix.
(b) Find out its eigenvalues.

Q3. Express $\delta\left(x^{\prime}-x\right)$ in the integral form.
Q4. What is Green's function $G_{0}^{(-)}\left(k . \boldsymbol{r} . \boldsymbol{r}^{\prime}\right)$
Q5. An electron beam of energy 4 atomic unit (a.u.) is elastically scattered from an atomic target. The momentum transfer is 2 atomic unit. Find out (a) scattering angle and (b) total cross section for $l=0$ case.
(0.5+0.5)

Q6. Express the state vector and the operator (let us assume A) of some physical system in the Interaction picture with those in the Schrodinger picture.

Q7. Express the transition probability (from the state $|i\rangle$ to $|n\rangle$) in the Interaction picture for any system in terms of that for the Schrodinger Picture.

Q8. What is $c_{1}^{n}(t)$ for the constant perturbation $(V(t)=\mathrm{V}$ (constant) for $t \geq 0 \& 0, t<0)$. (1)
Q9. Consider three identical particles in the state $\left|k^{\prime}\right\rangle,\left|k^{\prime \prime}\right\rangle,\left|k^{\prime \prime}\right\rangle$. Form the symmetric and anti-symmetric states for the case when any two of the states are same (say $\left.\left.k^{\prime}\right\rangle \&\left|k^{\prime \prime \prime}\right\rangle\right)$. (1)

Part-2

Q1. In the function space we can describe the action of this operator as $D|f\rangle=|d f / d x\rangle$ is the ket corresponding to the function $d f / d x$.
(a) What are the matrix elements of D in the $|x\rangle$ basis?
(b) Find the Hermitian Operator K from D operator and test its Hermitian properties.
(c) Write down the K in the x -basis.
(d) Find $\left\langle k \mid k^{\prime}\right\rangle$, where $|k\rangle$ is plane wave. $\quad(1+2+1+2)$

Q2. Starting from $f^{B 1}=-\frac{1}{4 \pi}\left\langle\phi_{k_{f}}\right| U\left|\phi_{k_{i}}\right\rangle$, for the Yukawa Potential $U(r)=U_{0} \frac{e^{-\alpha r}}{r}$, find
(a) Solve it to get $f^{B 1}$, assuming the incident and scattered wave functions as plane waves.
(b) Find the differential cross-section.
(c) From part (b), find the total cross section.

Q3. Consider a spin $1 / 2$ system-say a bound electron, subjected to a t-independent uniform, magnetic field in the z-direction and, in addition, a t-dependent magnetic field rotating in the xy plane;
$\boldsymbol{B}=B_{0} \hat{z}+B_{1}(\hat{x} \cos \omega t+\hat{y} \sin \omega t)$, with $B_{0} \& B_{1}$ constant. Using $H=-\boldsymbol{\mu} . \boldsymbol{B}$, where $\boldsymbol{\mu}=\frac{\boldsymbol{e}}{\boldsymbol{m}_{e} \boldsymbol{c}} \boldsymbol{S}$ (symbols have their usual meanings). $\left(S_{x}=\frac{\hbar}{2}\{(|+\rangle\langle-|)+(|-\rangle\langle+|)\}, S_{y}=\right.$ $\left.\frac{i \hbar}{2}\{-(|+\rangle\langle-|)+(|-\rangle\langle+|)\}, S_{z}=\frac{\hbar}{2}\{(|+\rangle\langle+|)-(|-\rangle\langle-|)\}\right)$
(a) Split H in terms of the spatial and temporal dependence part.
(b) Find the frequency ω_{21}.

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI
 FIRST SEMESTER: 2023-2024
 Comprehensive Exam: Part-B (Open Book)
 Course No: PHY F421 Course Title: Advanced Quantum Mechanics
 Date: 09.12.2023 Suggested Time: 60 Mins. Total Marks: 15

Q1. Let $\mathbf{S}_{\mathbf{1}}$ and $\mathbf{S}_{\mathbf{2}}$ are the two spin operators of the two electrons and $\mathbf{S}=\mathbf{S}_{\mathbf{1}}+\mathbf{S}_{\mathbf{2}}$ is the total spin of the electrons. Similarly, $\mathrm{S}_{\mathrm{z}}=\left(\mathrm{S}_{\mathrm{z}}\right)_{1}+\left(\mathrm{S}_{\mathrm{z}}\right)_{2}$. Solve following Eigen value problem; $S^{2} \chi_{2}$ and; $S_{z} \chi_{2}$, where $\chi_{1}=\frac{1}{\sqrt{2}}[\alpha(1) \beta(2)-\alpha(2) \beta(1)]$ and the symbols have their usual meanings.

Q2. (a) Obtain in first Born approximation the scattering amplitude, the differential and the total cross sections for scattering by the potential $U(r)=B \delta(r)$.
(b) For a certain scattering event of electron-atom collision for 81.6 eV electron impact energy, the scattering amplitude is expressed as: $f(k, \theta)=0.2 \sin \theta+i(0.2 k \cos \theta)$. Find out the total cross section from it (use atomic unit ; $e=m=\hbar=a_{0}=1, c=137,27.2 \mathrm{eV}=1$).

Q3. Consider a photo double ionization process in which two electrons are ejected from an atom following the absorption of a photon. Assuming that these electrons are ejected with the momenta $\hbar \boldsymbol{k}_{\boldsymbol{1}}$ and $\hbar \boldsymbol{k}_{\mathbf{2}}$ respectively. Find out the number of states for the energy intervals $E_{l}+d E_{l}$ and $E_{2}+d E_{2}$ with their directions into $d \Omega_{1}$ and $d \Omega_{2}$ of the momenta $\hbar \boldsymbol{k}_{\mathbf{1}}$ and $\hbar \boldsymbol{k}_{\mathbf{2}}$ respectively.
(b) Find the energy flux for a monochromatic field with vector potential $A=2 A_{0} \hat{x} \cos \left(\frac{\omega}{c} \hat{z} \cdot \boldsymbol{x}-\omega t\right)$ using classical electromagnetic field theory (Don not copy the results, derive it). Here symbols have their usual meanings.

Useful relations:

$$
S_{x} \alpha=\frac{\hbar}{2} \beta, S_{x} \beta=\frac{\hbar}{2} \alpha, \quad S_{y} \alpha=\frac{i \hbar}{2} \beta, S_{y} \beta=-i \frac{\hbar}{2} \alpha, S_{z} \alpha=\frac{\hbar}{2} \alpha, S_{z} \beta=-\frac{\hbar}{2} \beta
$$

