Birla Institute of Technology \& Science - Pilani, K K Birla Goa Campus

Second Semester 2022-2023

Special Topics Statistical Mechanics Comprehensive Exam

PHY F423
May 10, 2023
Total Marks: 60
Duration: 180 Minutes

1. Isotropic to nematic transition
(a) Why is it that $\left\langle\hat{v}^{(n)}\right\rangle$ is not a good choice for order parameter for a nematic to isotropic transition? $\left(\hat{v}^{(n)}\right.$ is a unit vector that points along the long axis of the rod like molecules.)
(b) Argue that $Q_{i j}=\left\langle v_{i}^{(n)} v_{j}^{(n)}-\frac{1}{3} \delta_{i j}\right\rangle$ is an appropriate choice.
(c) What is the form of Q in the isotropic phase? Justify
(d) What is the diagonal form of Q in the nematic phase? Justify.
(e) What do the eigenvectors of Q tell us about the system?

$$
[2+4+2+4+2]
$$

2. Markov process
(a) Explain briefly what is a Markov process?
(b) Consider a continuous process in which the a variable, x, switches between two values, x_{1} and x_{2}, randomly at rates $w_{12}=a$ and $w_{21}=b$. Write down the master equation for the process.
(c) If $x=x_{1}$ at $t=0$, what is the probability that the system is in state x_{2} at $t=1$?
(d) Show that in equilibrium, the correlation function, $\langle\delta x(0) \delta x(t)\rangle=\frac{a b\left(x_{1}-x_{2}\right)^{2}}{(a+b)^{2}} e^{-(a+b) t}$.

$$
[2+2+6+8]
$$

3. Brownian motion of harmonic oscillator: Consider the over-damped Langevin equation for a particle in a harmonic potential,

$$
m \eta v=-k x+f(t),
$$

where the noise $f(t)$ satisfies the conditions:
$\langle f(t)\rangle=0$ and $\left\langle f(t) f\left(t^{\prime}\right)\right\rangle=\Gamma \delta\left(t-t^{\prime}\right)$.
(a) Find $\langle x(t)\rangle$ with $x(0)=x_{0}$.
(b) Find $\left\langle\Delta x^{2}\right\rangle=\left\langle x(t)^{2}\right\rangle-\langle x(t)\rangle^{2}$ with $x_{0}=0$.
(c) Find the behaviour of $\left\langle\Delta x^{2}\right\rangle$ for $t \ll \frac{m \eta}{k}$. Explain the result.
(d) Find the behaviour of $\left\langle\Delta x^{2}\right\rangle$ for $t \gg \frac{m \eta}{k}$. Explain the result.
(e) Derive the fluctuation-dissipation theorem using the above result.
(f) Write down the corresponding Fokker-Planck equation for the process.
(g) What is the long time solution to the Fokker-Planck equation?

$$
[4+4+2+2+2+2+2]
$$

4. Critical phenomena
(a) High temperature series expansion for susceptibility of a spin system is given to be $\left(k_{B}=1\right)$:

$$
\chi=1+\frac{4}{T}+\frac{12}{T^{2}}+\frac{34}{T^{3}}+\frac{88}{T^{4}}+\ldots
$$

Find T_{c} and the susceptibility exponent, γ.
(b) What are scaling laws?
(c) How does Widom scaling hypothesis account for the scaling laws?

$$
[6+2+2]
$$

