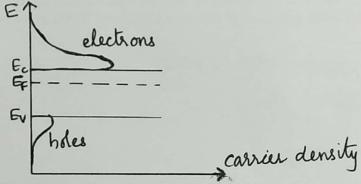
BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE – PILANI, K K BIRLA GOA CAMPUS FIRST SEMESTER 2022-2023

PHY F426

Mid Semester Exam (closed book)

Physics of Semiconductor Devices


Date: 01/11/2022, Tuesday

Time: 90 min Time: 4 pm – 5.30 pm

Max. Marks: 40

1) What is Brillouin zone? How is Brillouin zone and Brillouin zone boundary important in the context of the energy band gap of semiconducting materials? Explain [2+3]

- 2) What are direct and indirect band gap semiconductors? Explain with examples. Draw and explain the corresponding E k diagrams. [4+4]
- 3) The concentration of electrons in the conduction band reaches a maximum value at some energy value ΔE above E_c . This energy value is independent of the Fermi level. Find the value of that energy at $T=300 \, K$ in terms of E_c . [4]

- 4) Consider silicon at T = 300 K. Determine (a) p_o if E_i $E_f = 0.35$ eV. (b) Assuming that p_o from part (a) remains constant, determine the value of E_i E_F when T = 400 K. (c) Find the value of n_o for part (a). What do you infer from these calculations? [3+5+2+2]
- 5) Consider a semiconductor that is non-uniformly doped with donor impurity atoms $N_d(x)$. Find out the induced electric field in the semiconductor in thermal equilibrium in terms of $N_d(x)$. [4]
- 6) A 2 cm long piece of Si with cross-sectional area 0.1 cm² is doped with donors at 10¹⁵ cm⁻³ and has a resistance of 90 ohms. The saturation velocity of electrons in Si is 10⁷ cm/s for fields above 10⁵ V/cm. Calculate the electron drift velocity, if we apply a voltage of 100 V across the piece. What is the current through the piece if we apply a voltage of 10⁶ V across it?

Useful parameters and equations:

Free electron mass = 9.1×10^{-31} kg

Planck's constant, $h = 6.63 \times 10^{-34} \,\text{m}^2\text{kg/s}$

 $\label{eq:boltzmann} \begin{array}{l} \text{Boltzmann's constant } k_B = 1.38 \times 10^{\text{-}23} \text{ m}^2 \text{ kg s}^{\text{-}2} \text{ K}^{\text{-}1} \\ n_i \text{ (Si)} = 1.5 \times 10^{10} \text{ cm}^{\text{-}3} \\ N_c \text{ (Si)} = 2.8 \times 10^{19} / \text{cm}^3 \\ N_v \text{ (Si)} = 1.04 \times 10^{19} / \text{cm}^3 \\ E_g \text{ (Si)} = 1.12 \text{ eV} \end{array} \right) \text{ at 300 K}$

Intrinsic electron concentration,

$$n = 2\left(\frac{2\pi m_e^* k_B T}{h^2}\right)^{3/2} exp\left(\frac{E_F - E_C}{k_B T}\right)$$

For an n-type semiconductor,

$$N_d = n_i \exp\left(\frac{E_F - E_i}{k_B T}\right)$$

The density of states for an electron of mass me* located near the bottom of the conduction band with reference to the minimum of the conduction band (Ec) is given by

$$D(E)dE = \frac{1}{2\pi^2\hbar^3} (2m_e^*)^{3/2} (E - E_e)^{1/2} dE$$

FD Distribution,

$$f(E) = \frac{1}{1 + \exp(\frac{E - E_F}{k_B T})}$$

The intrinsic carrier concentration,

$$n_i^2 = N_c N_v \exp\left(\frac{-E_g}{k_B T}\right)$$

The drift -diffusion equations,

$$J_{n,p}=(n,p)q\mu_{n,p}E\pm qD_{n,p}\,\frac{dn_{n}p}{dx}$$