Birla Institute of Technology \& Science, Pilani
 Mid term Examination

Course Title : SOFTWARE TESTING METHODOLOGIES
Weightage : 30\% (As per Course Handout)
Duration : 1.5 Hours
Q1 At least how many test cases are required to achieve multiple condition coverage of the following code segment: [1]

If $((a>5)$ and $(b<100)$ and $(c>50)) x=x+1$;
a) 2
b) 4
c) 6
d) 8

Q2. For a function of 4 variables, boundary value analysis generates: [1]
a) 9 test cases
b) 17 test cases
c) 33 test cases
d.) 25 test cases

Q3. Consider the following program:

```
while (first <= last)
{
    if (array [middle] < search)
        first = middle +1;
    else if (array [middle] == search)
        found = True;
    else last = middle - 1;
    middle = (first + last)/2;
}
if (first < last) not Present = True;
```

The cyclomatic complexity of the program segment is \qquad
a. 3
b. 4
c. 5
d. 6

Q4. Which of the following statements about the relationship of statement coverage and decision coverage is correct? [1]
a. 100% statement coverage means 100% decision coverage.
b. 100% decision coverage means 100% statement coverage.
c. 90% statement coverage means 90% decision coverage.
d. 90% decision coverage means 90% statement coverage.

Q5. Find if the following statements in the context of software testing are TRUE or FALSE. [1]
(S1) Statement coverage cannot guarantee execution of loops in a program under test.
(S2) Use of independent path testing criterion guarantees execution of each loop in a program under test more than once.
a. True, False
b. False, True
c. True, True
d. False, False

Q6. For the graph below (N is the set of nodes, N 0 is initial node, Nf is the accepting node, E represents the edges):
$\cdot \mathrm{N}=\{1,2,3\} \cdot \mathrm{N} 0=\{1\} \cdot \mathrm{Nf}=\{3\} \cdot \mathrm{E}=\{(1,2),(1,3),(2,1),(2,3),(3,1)\}$
Also consider the following (candidate) paths: $\cdot \mathrm{p} 1=[1,2,3,1] \cdot \mathrm{p} 2=[1,3,1,2,3] \cdot \mathrm{p} 3=[1,2$, $3,1,2,1,3] \cdot \mathrm{p} 4=[2,3,1,3] \cdot \mathrm{p} 5=[1,2,3,2,3]$
Draw the graph. Which of the listed paths are test paths? [3]
Q7. For the following CFG, obtain the following: Write down which paths the required tests should cover to achieve 100 \% Statement Coverage. Write down, which paths the required tests
should cover to achieve 100 \% Decision Coverage. Calculate the cyclomatic complexity

[3]

Q8. Comment with Yes/ No for the following statements. Provide a justification to each one of them with a sample code and justification. [4]
a. Does 100% all-use coverage gives 100% multiple-condition coverage?
b. Does 100% p-use coverage gives 100% decision coverage?

Q9. Suppose that coverage criterion C 1 subsumes coverage criterion C2. Further suppose that test set T1 satisfies C1 on program P and test set T2 satisfies C2, also on P. Does T1 necessarily satisfy C2? Explain. Does T2 necessarily satisfy C1? Explain. [4]

Q10. Consider a path ' s ' through some program ' P '. Variable ' v ' is defined along this path ' s ' at some node N_{d} and used subsequently at some node N_{u} in an assignment i.e. there is a c-use of variable ' v ' along the path ' s '. [Note: In the following two questions Q11 (a) and Q11 (b), simply writing True/False or Yes/No will fetch zero mark. You have to give a proper example to justify your choice.]
i. Suppose now that path ' s ' is infeasible. Does this imply that c-use of ' v ' at node $N u$ is also infeasible. Explain your answer with the help of a suitable example. [2]
ii. Suppose now that there is a p-use of variable ' v ' at some node N_{p} along the same path ' s '. Given that path ' s ' is infeasible, Is this p-use of the variable ' v ' also infeasible. Explain your answer with the help of a suitable example. [2]
iii. Consider a program ' P ' and its first-order mutant ' M ' as shown in the following table. Actually as per the requirements, the program ' P ' has an error at line 3 and the generated first order mutant ' M ' is the actual correct version. Construct a test case T_{1} that causes P to fail and establishes the relation $\mathrm{P}\left(\mathrm{T}_{1}\right) \neq \mathrm{M}\left(\mathrm{T}_{1}\right)$. Can you construct a test case T_{2} on which P is successful but $\mathrm{P}\left(\mathrm{T}_{2}\right) \neq \mathrm{M}\left(\mathrm{T}_{2}\right)$. [5]

Program P	Mutant M
1. input x, y	1. input x, y
2. if $\mathrm{x}<\mathrm{y}$ Then	2. if $\mathrm{x}<\mathrm{y}$ Then
3. $\mathrm{z}=\mathrm{x} *(\mathrm{y}+\mathrm{x}) ;$	3. $\mathrm{z}=\mathrm{x} *(\mathrm{y}+1) ;$
4. else	4. else
5. $\mathrm{z}=\mathrm{x} *(\mathrm{y}-1) ;$	5. $\mathrm{z}=\mathrm{x} *(\mathrm{y}-1) ;$

Q11. Identify the test suites between $\mathrm{T} 1, \mathrm{~T} 2, \mathrm{~T} 3$ and T 4 that ensures statement coverage for the following program[2]
Begin
If ($\mathrm{x}==\mathrm{y}$) \{P1; exit; $\}$
else if $\{\mathrm{u}==\mathrm{v}\}\{\mathrm{P} 2 ;\}$
else \{P3; exit; $\}$
P4;
End
T1: $x=y$ and $x!=v$
T2: $x!=y$ and $u=v$
T3: x, y, u and v are all distinct
T4: x, y, u and v are all equal

